4x^4-4x^2+3x/x-4

Simple and best practice solution for 4x^4-4x^2+3x/x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^4-4x^2+3x/x-4 equation:


D( x )

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

4*x^4-(4*x^2)+(3*x)/x-4 = 0

4*x^4-4*x^2+(3*x)/x-4 = 0

4*x^4-4*x^2-1 = 0

t_1 = x^2

4*t_1^2-4*t_1^1-1 = 0

4*t_1^2-4*t_1-1 = 0

DELTA = (-4)^2-(-1*4*4)

DELTA = 32

DELTA > 0

t_1 = (32^(1/2)+4)/(2*4) or t_1 = (4-32^(1/2))/(2*4)

t_1 = (4*2^(1/2)+4)/8 or t_1 = (4-4*2^(1/2))/8

t_1 = (4-4*2^(1/2))/8

x^2-((4-4*2^(1/2))/8) = 0

1*x^2 = (4-4*2^(1/2))/8 // : 1

x^2 = (4-4*2^(1/2))/8

t_1 = (4*2^(1/2)+4)/8

x^2-((4*2^(1/2)+4)/8) = 0

1*x^2 = (4*2^(1/2)+4)/8 // : 1

x^2 = (4*2^(1/2)+4)/8

x^2 = (4*2^(1/2)+4)/8 // ^ 1/2

abs(x) = ((4*2^(1/2)+4)^(1/2))/(2*2^(1/2))

x = ((4*2^(1/2)+4)^(1/2))/(2*2^(1/2)) or x = -(((4*2^(1/2)+4)^(1/2))/(2*2^(1/2)))

x in { ((4*2^(1/2)+4)^(1/2))/(2*2^(1/2)), -(((4*2^(1/2)+4)^(1/2))/(2*2^(1/2))) }

See similar equations:

| 0=3+4sin(2x) | | 0=3+4sin(sx) | | 5(x-3)=5x+15 | | 19+3b=4-(-6b-6) | | 0=-7x+3 | | x^2+2x+42= | | 6d^2+2d*5d= | | log(3x-2)+log(x+2)=1 | | 121x^2-44=0 | | 8(x-6)=-2x+22 | | 4/24=x/58 | | 3x-2x=3+x | | 20+4v=-5(v-4) | | 9x^2+42x-72=0 | | 4-2x=(-2) | | x^2-30x+81= | | 6(1-4n)=7n+37 | | 4x^2-12=64 | | x+12y-5x+6y=17 | | (3x-2)(3x^2-11x-4)=0 | | 3m+zr=r-7h | | 6x+18=7x | | 402x-5.36=3.36-6.7x | | log(5)*(x+20)+log(5)*(x+120)=3 | | N+3080=50827 | | -8(7x-6)=x-9 | | 5/8+R7 | | 123/90= | | 9/21= | | 12+8n=-7(n-6) | | 3r^2+2r-21=0 | | x^3-2x^2+6x-12= |

Equations solver categories